

SM Transparency Catalog ► Knight Wall Systems ► CI® and HCI Systems

KWS® CI® & HCI Systems

Knight Wall Systems® CI® and HCI systems deliver exceptional thermal performance and sustainability through true continuous insulation and minimized thermal bridging using thermally isolated fasteners. Designed for versatility and ease of installation, they support nearly any cladding type. With durable, corrosion-resistant components, both systems exceed energy code requirements while reducing environmental impact.

Performance dashboard

True continuous insulation provides high thermal performance and energy efficiency

Thermally isolated fasteners minimize thermal bridging and preserve insulation integrity

Supports both horizontal and vertical cladding with flexible secondary rail options

Made from corrosion-resistant ZAM® coated

Meets or exceeds North American energy code requirements

Easy-to-install drop-in system simplifies design and construction

Available in 3/4" or 11/2" depths

Visit Knight Wall Systems for more product information:

CI® System, HCI System

MasterFormat® 07 05 43 CI® System Guide Spec, Technical Data Sheet HCI System Guide Spec, Technical Data Sheet

For spec help, contact us or call 1-855-KWS-WALL

Environment & materials

Improved by:

Steel CI® and HCI® girts are recyclable and noncombustible

Minimized Thermal Bridging with only the fasteners penetrating the insulation

ZAM® coated steel enhances corrosion resistance and extends the lifespan of each system

Certification & rating systems:

ZAM® coating is Red List Free

See LCA, interpretation & rating systems

See materials, interpretation & rating systems

SM Transparency Report (EPD)™ + Material Health Overview™

LCA 3rd-party reviewed Transparency Report (EPD) 3rd-party verified Validity: 06/03/25 - 06/02/30

Material **MATERIAL HEALTH** Self-declared

SM-KWS - 20250603 - 001

evaluation Ø

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 14044; ISO 21930:2017; SM Part A: LCA calculation rules and report requirements, 2023; SM Part B: **Cladding Support Components and** Systems; and ISO 14025:2006.

Industrial Ecology Consultants 35 Bracebridge Rd Newton, MA 02459 (617) 553-4929

SUMMARY

Reference PCR

Regions; system boundaries North America; Cradle-to-gate

Declared unit

0.6096m (24 linear in) of cladding support system: one single clip unit (if present) & metal rails with clip spaced at one per 24in, w/ exterior cavity depth sufficient to accommodate 101.6mm (4in) of insulation plus depth of support components outboard of insulation layer to which the cladding is attached.

LCIA methodology; LCA software; LCI databases

TRACI 2.1; SimaPro Developer 9.6; ecoinvent v3.10, Industry data 2.0, and US-EI 2.2

LCA of KWS rainscreen cladding support systems

Knight Wall Systems 2401 E 6th St Deer Park, WA, 99006

(855) 597-9255

Contact us

LCA results & interpretation

CI® system

Scope and summary

♦ Cradle to gate ○ Cradle to gate with options ○ Cradle to grave

SM Transparency Catalog ► Knight Wall Systems ► CI® and HCI Systems

Application Rainscreen cladding support systems manufactured by Knight Wall Systems not

only create an air cavity to minimize water contact with the primary building envelope but also provide a highly efficient support structure for attaching nearly any type of cladding. CI® system uses unique 3/4" deep vertical box girts, called CI-GIRT®, which is designed to properly disburse the facade loads over exterior rigid insulation. These systems are designed to accommodate true continuous insulation and they significantly improve energy efficiency while protecting the building's vital and delicate envelope. An 18-gauge CI-GIRT® with a 0.75" depth configuration was selected as the representative product.

Declared unit The declared unit is 0.6096 m (24 linear inches) of cladding support system

consisting of a single clip unit, if applicable, and 24 inches length of metal rails with the clip spaced at one per 24 inches. For CI® system, clip is not applicable. The exterior cavity depth is sufficient to accommodate 101.6 mm (4 inches) of insulation plus depth of support components outboard of the insulation layer to which the cladding is attached. Fasteners are excluded. Mass per declared unit: 0.708 kg

Manufacturing data Reporting period: January 2024 – December 2024

Location: Deer Park, WA

Material composition by wt%

PART

Girt

MATERIAL

Steel

All life cycle stages

What's causing the greatest impacts

The cradle-to-gate life cycle impacts of the product are primarily driven by the material extraction and upstream processing module (A1), which

accounts for over 83% of the total impacts across nearly all environmental impact categories. In the case of ozone depletion, where A1's contribution is relatively lower, it still remains the largest contributor, responsible for approximately 66% of the impacts among the A1 to A3 modules. Transportation (A2) is generally the second-highest contributor, although its impacts are significantly lower than those of A1. The manufacturing module (A3) typically contributes less than A2 but exceeds it in ozone depletion, carcinogenics, and non-carcinogenics. Overall, both A2 and A3 have relatively minor contributions compared to the dominant influence of A1. **Extraction and upstream processing**

production or preprocessing. It is the most impactful module in the cradle-togate life cycle, primarily due to two key processes: the upstream production of steel coils, which includes iron ore mining and refining, and the slitting operations at the slitting facility. These processes which take place entirely outside the KWS facility, are responsible for approximately 99% of the A1 impacts across all impact categories. Transport to factory The transportation module (A2) is the second most significant contributor

to several impact categories, including global warming potential, smog

formation, acidification, eutrophication, respiratory effects, ecotoxicity, and

The A1 module dominates the results across all impact categories and

includes activities related to raw material extraction and upstream

AVG. % WT

90-95%

fossil fuel depletion. The primary impacts in A2 arise from the upstream rail transport of steel coils to the slitting facility and the road transport of slitted coils to the KWS facility. Rail transport, in particular, has a greater impact on smog, acidification, and eutrophication due to emissions from diesel locomotives and large-scale fuel combustion. Manufacturing The manufacturing module (A3) surpasses A2 in impacts related to ozone

primarily driven by electricity consumption in various processing operations at the KWS facility. The use of electricity is a significant contributor across several impact categories. Sensitivity analysis Sensitivity analyses were conducted to assess the robustness of the

results, focusing on areas with the highest environmental impacts. The

majority of impacts stem from raw material extraction and upstream

transportation to the KWS facility. To evaluate impact variability across

influences upstream processes like steel extraction, slitting, and

depletion, carcinogenics, and non-carcinogenics. These impacts are

production, with variations depending on the amount of steel used. This

different product configurations of CI® system, sensitivity analyses were performed using cradle-to-gate results. The analysis showed that environmental impacts are sensitive to changes in steel mass between configurations. As a result, configuration-specific scaling factors were developed to estimate cradle-to-gate impacts by multiplying the impact results of a representative product by the appropriate factor.

How we're making it greener Knight Wall Systems® is dedicated to reducing the environmental impacts of the CI® system through responsible materials and efficient operations. Our steel, sourced from the United States, contains recycled content and

comes coated with ZAM®, a Red List Free material that boosts corrosion

resistance and extends product lifespan. We also ensure that all steel waste generated during production is recycled. To minimize emissions, we optimize shipping by maximizing crate capacity and grouping shipments for several projects. These initiatives highlight our commitment to sustainability and continual product improvement. See how we make it greener

A2 TRANSPORT TO FACTORY

(X) A2 Transport

LCA results

Included (X) | Excluded (MND)* *Modules A4, A5, B, C, and D are excluded.

Information modules:

SM Single Score Learn about SM Single Score results

Materials or processes contributing >20% to

total impacts in each life cycle stage

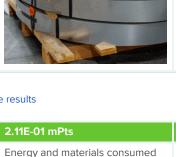
Ecological damage

Eutrophication

Global warming

Respiratory effects

Fossil fuel depletion


Ecotoxicity

Smog

A1 EXTRACTION AND

UPSTREAM PROCESSING

(X) A1 Raw material supply

during steel extraction and

8.89E-03

1.27E-03

3.37E+00

182F-03

1.18E-01

2.23E+00

6.16E+00

Truck transportation to KWS

facility.

1.46E-03

9.26E-05

1.93E-01

9 25F-05

4.71E-02

3.67E-01

1.80E-01

performance.

(X) A3 Manufacturing

Electricity consumed during KWS

operations.

4.23E-04

5.06E-05

7.83E-02

6.18E-05

7.12E-03

8.42E-02

7.03E-02

½ product

1 product

1.5 products

2 points

.5 points

.75 points

1 point

processing.

Impacts per declared unit

TRACI v2.1 results per declared unit			
LIFE CYCLE STAGE	A1 EXTRACTION AND UPSTREAM PROCESSING	A2 TRANSPORT TO FACTORY	A3 MANUFACTURING

Impact category Unit Acidification kg SO₂ eq

kg N eq

kg CO₂ eq

kg PM_{2.5} eq

MJ surplus

CTU

kg O₃ eq

Ozone depletion	kg CFC-11 e	eq Ø	1.69E-08	2.83E-09	6.02E-09	
Human health da	mage					
Impact category	Unit					
Carcinogenics	CTU _h	•	3.60E-08	6.69E-11	4.59E-10	
Non-carcinogenics	CTU _h	0	2.05E-07	9.48E-09	1.38E-08	

Additional environmental information Unit Impact category

References	Rating systems
LCA Background Report Knight Woll Systems LCA Registratund Report of Painters on cladding sympat.	The intent is to reward project teams for selecting products from

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services"

ISO 21930:2017, "Sustainability in Building Construction — Environmental Declaration of Building Products" serves as the core PCR along with

tab@sustainableminds.com.

tab@sustainableminds.com.

and US-EI 2.2 databases; TRACI 2.1.

Sustainable Minds Part A. SM Part A: LCA calculation rules and report requirements, version 2023

August, 2023. Part A review conducted by the Sustainable Minds TAB,

Oct 31, 2022. Part B review conducted by the Sustainable Minds TAB,

SM Part B: Cladding Support Components and Systems, 2022

Knight Wall Systems LCA Background Report of Rainscreen cladding support

systems, KWS 2025; SimaPro Developer 9.6; Ecoinvent v3.10, Industry data 2.0,

Download PDF SM Transparency Report/ EPD

on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. Environmental declarations of products that conform to the same PCR and include the same life cycle stages, but are made by different

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products

manufacturers, may not sufficiently align to support direct comparisons. They therefore cannot be

category PCR where applicable, include all relevant information modules, be limited to EPDs $\,$ applying a functional unit, and be based on equivalent scenarios with respect to the context of

construction works. Some LCA impact categories and inventory items are still under development

used as comparative assertions unless the conditions as defined in ISO 14025 Section 6.7.2. 'Requirements for Comparability' are satisfied. In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. Any EPD comparison must be carried out at the building level per ISO 21930 guidelines, use the same sub-

and can have high levels of uncertainty. To promote uniform guidance on the data collection, calculation, and reporting of results, the ACLCA methodology (ACLCA 2019) was used.

☐ Industry-wide (generic) EPD Product-specific Type III EPD

1 product LEED BD+C: New Construction | v4.1 - LEED v4.1

manufacturers who have verified improved life-cycle environmental

LEED BD+C: New Construction | v4 - LEED v4

Environmental product declarations O Industry-wide (generic) EPD

Product-specific Type III EPD

Building product disclosure and optimization

Building product disclosure and optimization

Environmental product declarations

Collaborative for High Performance Schools National MW C5.1 – Environmental Product Declarations

Third-party certified type III EPD

NC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell NC 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs

Green Globes for New Construction and Sustainable

Mat 02 - Environmental impacts from construction products **Environmental Product Declarations (EPD)**

○ Industry-average EPD

Product-specific EPD

Interiors

Materials and resources

Multi-product specific EPD

BREEAM New Construction 2018

Knight Wall Systems Reference PCR 2401 E 6th St

Material **MATERIAL HEALTH**

Validity: 06/03/25 - 06/02/30

SM-KWS - 20250603 - 001

Transparency Report (EPD)

EPD

3rd-party reviewed

3rd-party verified

Self-declared

V

LCA

Consultants, according to ISO 14044; ISO 21930:2017; SM Part A: LCA calculation rules and report requirements, 2023; SM Part B: **Cladding Support Components and** Systems; and ISO 14025:2006. **Industrial Ecology Consultants** 35 Bracebridge Rd Newton, MA 02459 (617) 553-4929

Industrial Ecology Consultants

SM Transparency Report (EPD)™ + Material Health Overview™

This environmental product

verified by Industrial Ecology

© 2025 | The SM Transparency Report [EPD]** Program is operated by Sustainable Minds* (www.sustainableminds.com) | Privacy policy

declaration (EPD) was externally

Declared unit 0.6096n support

Regions; system boundaries

North America; Cradle-to-gate

SUMMARY

present) at one p depth su 101.6mm of support components outboard of insulation layer to which the cladding is attached.

ecoinvent v3.10, Industry data 2.0,

and US-EI 2.2

Deer Park, WA, 99006

(855) 597-9255

d unit	Contact us
n (24 linear in) of cladding	55
system: one single clip unit (if	
& metal rails with clip spaced	
er 24in, w/ exterior cavity	
ufficient to accommodate	
(4in) of insulation plus depth	

LCIA methodology; LCA software; LCI databases TRACI 2.1; SimaPro Developer 9.6;

Public LCA

LCA results & interpretation

Sustainable Minds

HCI system

Scope and summary

♦ Cradle to gate ○ Cradle to gate with options ○ Cradle to grave

Application

only create an air cavity to minimize water contact with the primary building envelope but also provide a highly efficient support structure for attaching nearly any type of cladding. HCl system uses unique 3/4" deep horizontal girts, called HCI-GIRT®, which is designed to properly disburse the facade loads over exterior rigid insulation. These systems are designed to accommodate true continuous insulation and they significantly improve energy efficiency while protecting the building's vital and delicate envelope. An 18-gauge HCI-GIRT® with a 0.75" depth configuration was selected as the representative product.

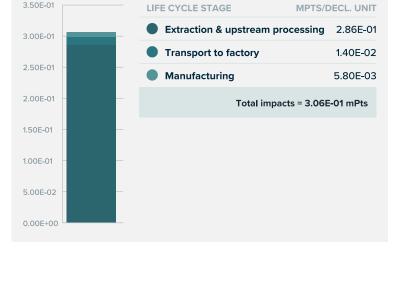
Rainscreen cladding support systems manufactured by Knight Wall Systems not

Declared unit The declared unit is 0.6096 m (24 linear inches) of cladding support system

consisting of a single clip unit, if applicable, and 24 inches length of metal rails with the clip spaced at one per 24 inches. For HCl system, clip is not applicable. The exterior cavity depth is sufficient to accommodate 101.6 mm (4 inches) of insulation plus depth of support components outboard of the insulation layer to which the cladding is attached. Fasteners are excluded. Mass per declared unit: 0.912 kg

Manufacturing data

Reporting period: January 2024 – December 2024 Location: Deer Park, WA


Material composition by wt%

9		30 3070
Packaging	Kiln dried fir packaging	3-5%
Packaging	Plywood packaging	3-5%
Packaging	Steel banding	<1%
Total impacts by life cycle stag	ge [mPts/decl unit]	

Girt Steel

PART

MATERIAL

All life cycle stages

What's causing the greatest impacts

The cradle-to-gate life cycle impacts of the product are primarily driven by the material extraction and upstream processing module (A1), which

accounts for over 83% of the total impacts across nearly all environmental impact categories. In the case of ozone depletion, where A1's contribution is relatively lower, it still remains the largest contributor, responsible for approximately 70% of the impacts among the A1 to A3 modules. Transportation (A2) is generally the second-highest contributor, although its impacts are significantly lower than those of A1. The manufacturing module (A3) typically contributes less than A2 but exceeds it in ozone depletion, carcinogenics, and non-carcinogenics. Overall, both A2 and A3 have relatively minor contributions compared to the dominant influence of A1. **Extraction and upstream processing**

includes activities related to raw material extraction and upstream production or preprocessing. It is the most impactful module in the cradle-togate life cycle, primarily due to two key processes: the upstream production of steel coils, which includes iron ore mining and refining, and the slitting operations at the slitting facility. These processes which take place entirely outside the KWS facility, are responsible for approximately 99% of the A1 impacts across all impact categories. Transport to factory The transportation module (A2) is the second most significant contributor

to several impact categories, including global warming potential, smog

The A1 module dominates the results across all impact categories and

AVG. % WT

90-95%

formation, acidification, eutrophication, respiratory effects, ecotoxicity, and fossil fuel depletion. The primary impacts in A2 arise from the upstream rail transport of steel coils to the slitting facility and the road transport of slitted coils to the KWS facility. Rail transport, in particular, has a greater impact on smog, acidification, and eutrophication due to emissions from diesel locomotives and large-scale fuel combustion. Manufacturing The manufacturing module (A3) surpasses A2 in impacts related to ozone

primarily driven by electricity consumption in various processing operations at the KWS facility. The use of electricity is a significant contributor across several impact categories. Sensitivity analysis Sensitivity analyses were conducted to assess the robustness of the

results, focusing on areas with the highest environmental impacts. The

majority of impacts stem from raw material extraction and upstream

depletion, carcinogenics, and non-carcinogenics. These impacts are

production, with variations depending on the amount of steel used. This influences upstream processes like steel extraction, slitting, and transportation to the KWS facility. To evaluate impact variability across different product configurations of HCI system, sensitivity analyses were performed using cradle-to-gate results. The analysis showed that environmental impacts are sensitive to changes in steel mass between configurations. As a result, configuration-specific scaling factors were developed to estimate cradle-to-gate impacts by multiplying the

impact results of a representative product by the appropriate factor. How we're making it greener Knight Wall Systems® is dedicated to reducing the environmental impacts of the HCl system through responsible materials and efficient operations.

Our steel, sourced from the United States, contains recycled content and comes coated with ZAM®, a Red List Free material that boosts corrosion

resistance and extends product lifespan. We also ensure that all steel waste generated during production is recycled. To minimize emissions, we optimize shipping by maximizing crate capacity and grouping shipments for several projects. These initiatives highlight our commitment to sustainability and continual product improvement. See how we make it greener

A2 TRANSPORT TO FACTORY

(X) A2 Transport

LCA results

LIFE CYCLE STAGE

Information modules: Included (X) | Excluded (MND)*

*Modules A4, A5, B, C, and D are excluded.

SM Single Score Learn about SM Single Score results

Materials or processes contributing >20% to

Energy and materials consumed

during steel extraction and

2.86E-01 mPts

1.20E-02

1.73E-03

2.78E-07

2.46E-03

1.60E-01

A1 EXTRACTION AND

UPSTREAM PROCESSING

(X) A1 Raw material supply

Truck transportation to KWS

facility.

1.97E-03

1.25E-04

1.28E-08

1.25E-04

6.37E-02

A3 MANUFACTURING

(X) A3 Manufacturing

Electricity consumed during KWS

operations.

5.05E-04

6.16E-05

1.74E-08

7.78E-05

9.01E-03

total impacts in each life cycle stage processing.

Impacts per declared unit

kg SO₂ eq

kg N eq

CTU_h

kg PM_{2.5} eq

TRACI v2.1 results per declared unit				
LIFE CYCLE STAGE	A1 EXTRACTION AND	A2 TRANSPORT TO FACTORY	A3 MANUFACTURING	

Unit Impact category

Ecological damage

Acidification

Eutrophication

Global warming	kg CO₂ eq	0	4.56E+00	2.62E-01	9.13E-02
Ozone depletion	kg CFC-11 eq	0	2.28E-08	3.83E-09	6.19E-09
Human health dar	nage				
Impact category	Unit				
Carcinogenics	CTU _h	0	4.87E-08	9.06E-11	5.54E-10

kg O₃ eq Smog Additional environmental information

Non-carcinogenics

Respiratory effects

Impact category	Unit				
Fossil fuel depletion	MJ surplus	0	3.02E+00	4.97E-01	1.00E-01
Ecotoxicity	CTU _e	0	8.34E+00	2.44E-01	8.89E-02

rules for environmental product declarations of construction products and services"

References

LCA Background Report

and US-EI 2.2 databases; TRACI 2.1.

ISO 21930:2017, "Sustainability in Building Construction — Environmental Declaration of Building Products" serves as the core PCR along with

tab@sustainableminds.com.

tab@sustainableminds.com.

EPD

Validity: 06/03/25 - 06/02/30

SM-KWS - 20250603 - 001

MATERIAL HEALTH

Self-declared

Sustainable Minds Part A. SM Part A: LCA calculation rules and report requirements, version 2023

August, 2023. Part A review conducted by the Sustainable Minds TAB,

Oct 31, 2022. Part B review conducted by the Sustainable Minds TAB,

SM Part B: Cladding Support Components and Systems, 2022

Knight Wall Systems LCA Background Report of Rainscreen cladding support

ISO 14025, "Sustainability in buildings and civil engineering works -- Core

systems, KWS 2025; SimaPro Developer 9.6; Ecoinvent v3.10, Industry data 2.0,

Download PDF SM Transparency Report/ EPD

on a life cycle basis. They are designed to present information transparently to make the limitations of comparability more understandable. Environmental declarations of products that conform to the same PCR and include the same life cycle stages, but are made by different

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products

certain assumptions, data quality, and variability between LCA data sets may still exist. Any EPD comparison must be carried out at the building level per ISO 21930 guidelines, use the same sub-

construction works. Some LCA impact categories and inventory items are still under development

category PCR where applicable, include all relevant information modules, be limited to EPDs $\,$ applying a functional unit, and be based on equivalent scenarios with respect to the context of

manufacturers, may not sufficiently align to support direct comparisons. They therefore cannot be used as comparative assertions unless the conditions as defined in ISO 14025 Section 6.7.2. 'Requirements for Comparability' are satisfied. In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences i

and can have high levels of uncertainty. To promote uniform guidance on the data collection, calculation, and reporting of results, the ACLCA methodology (ACLCA 2019) was used.

☐ Industry-wide (generic) EPD

O Industry-wide (generic) EPD

Product-specific Type III EPD

Interiors

Rating systems

performance.

Product-specific Type III EPD 1 product

LEED BD+C: New Construction | v4.1 - LEED v4.1

½ product

1 product

1.5 products

2 points

.5 points

.75 points

1 point

The intent is to reward project teams for selecting products from

LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization

Building product disclosure and optimization

Environmental product declarations

manufacturers who have verified improved life-cycle environmental

Environmental product declarations

Collaborative for High Performance Schools National

MW C5.1 – Environmental Product Declarations Third-party certified type III EPD

Materials and resources NC 3.5.1.2 Path B: Prescriptive Path for Building Core and Shell

NC 3.5.2.2 and SI 4.1.2 Path B: Prescriptive Path for Interior Fit-outs

Mat 02 - Environmental impacts from construction products

Green Globes for New Construction and Sustainable

BREEAM New Construction 2018

Environmental Product Declarations (EPD)

Product-specific EPD

○ Industry-average EPD

Multi-product specific EPD

SM Transparency Report (EPD)™ + Material Health Overview™	

This environmental product Reference PCR 2401 E 6th St 6M Part B: Cladding Support Components and Systems, 2 3rd-party reviewed declaration (EPD) was externally Deer Park, WA, 99006 verified by Industrial Ecology Transparency Report (EPD) Consultants, according to ISO (855) 597-9255 Regions; system boundaries 14044; ISO 21930:2017; SM Part A: 3rd-party verified North America; Cradle-to-gate LCA calculation rules and report **Declared unit** Contact us requirements, 2023; SM Part B:

> Newton, MA 02459 (617) 553-4929

LCA

Material

Industrial Ecology Consultants

Cladding Support Components and

Systems; and ISO 14025:2006.

Industrial Ecology Consultants

35 Bracebridge Rd

© 2025 | The SM Transparency Report [EPD]** Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

SUMMARY

is attached.

0.6096m (24 linear in) of cladding support system: one single clip unit (if present) & metal rails with clip spaced

at one per 24in, w/ exterior cavity depth sufficient to accommodate 101.6mm (4in) of insulation plus depth of support components outboard of insulation layer to which the cladding

LCIA methodology; LCA software; LCI databases TRACI 2.1; SimaPro Developer 9.6; ecoinvent v3.10, Industry data 2.0,

and US-EI 2.2 Public LCA

Knight Wall Systems

SM Transparency Catalog ► Knight Wall Systems ► CI® and HCI Systems

CI® and HCI Systems

EPD additional content

Data Technical information

EPD additional content

US-EI 2.2 databases. Allocation The PCR prescribes where and how allocation occurs. Since only facility-level data were available, allocation among the five cladding support system types manufactured in that facility was necessary to determine the input

and output flows associated with the product. Annual manufacturing resource

Background This product-specific plant-specific declaration was created by collecting production data from the KWS facility in Deer Park, WA. Secondary

data sources include those available in ecoinvent v3.10, Industry data 2.0, and

consumption, including electricity and ancillary materials, was distributed evenly across all five system types based on the total annual linear foot production of each system type. Linear foot production was chosen as the primary allocation metric because it represents manufacturing efforts, considering factors such as material throughput and processing time. Additionally, no recycled materials are used in the product system, and there were no co-products manufactured.

Cut-off criteria for including mass and energy flows are set at 1% of renewable primary energy use, 1% of nonrenewable primary energy use, 1% of the total mass input for a unit process, and 1% of environmental impacts. The total of excluded input flows per module shall not exceed 5% for energy, mass, or environmental impacts. An exception is made for substances with hazardous or

toxic properties, which must be reported even if they fall below the 1% mass

threshold. No known mass or energy flows have been deliberately excluded

from this declaration, confirming that the criteria have been met. Biogenic carbon is included in the reported results. Quality Inventory data quality is judged by its precision (measured, calculated, or estimated), completeness (e.g., unreported emissions), consistency (degree of uniformity of the methodology applied on a study serving as a data source), and representativeness (geographical, temporal, and technological).

To cover these requirements and to ensure reliable results, first-hand industry data in combination with consistent background LCA information from SimaPro

were used.

Sustainable Minds worked with Knight Wall Systems to obtain a comprehensive set of primary data associated with the manufacturing processes. The product system was checked for mass balance and completeness of the inventory. The data set was considered complete based on our understanding of the manufacturing site and a review with key stakeholders on the KWS team, and cut-off criteria were observed consistent with those prescribed in the PCR.

Capital equipment was excluded as required by the PCR. Otherwise, no data was knowingly omitted. Where country-specific data were unavailable, global or rest-of-world averages were used as proxies to represent transportation in

Developer 9.6, and Ecoinvent v3.10, Industry data 2.0, and US-EI 2.2 databases

those locations. Additionally, no proxy data were used to represent materials and therefore did not have a significant impact of the results. Primary data were collected with a similar level of detail, while background data were sourced primarily from the ecoinvent database, and other databases were used if data were not available in ecoinvent or the data set was judged to be more representative. Other methodological choices were made consistently throughout the model. Major system boundary exclusions:

• Building operational energy and water use

Manufacture and transport of packaging materials not associated with the

Disposal of packaging materials not associated with the final product

Manufacturing, maintenance, and operation of support equipment

Construction of major capital equipment

Human labor and employee transport

Life cycle impact assessment results

final product

Parameter

Ozone depletion

Global warming

Acidification

Smog

• The products evaluated in this report may optionally be coated with a black PVDF coating, which was excluded from this analysis.

Primary data were modeled based on information provided by KWS for calendar year 2024. However, upstream supply chain data are subject to

Major assumptions and limitations:

variability, which may impact the accuracy of the results. Upstream suppliers were contacted to gather information on component

processing, including manufacturing activities, waste handling, and scrap

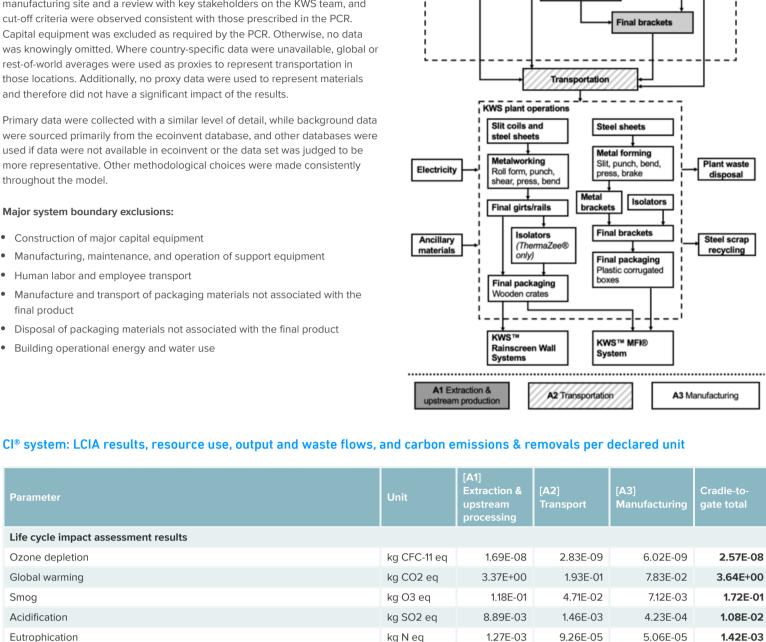
- rates. However, the data provided are based on estimates rather than primary data collected directly from the upstream facilities. Due to the unavailability of separate electricity data for each system type,
- electricity consumption in the manufacturing facility was allocated proportionately based on the linear foot production of each system type. However, slight deviations may exist between system types, which could affect the accuracy of the allocation. Generic data sets used for material inputs, transport, and waste processing
- are considered good quality, but actual impacts from material suppliers, transport carriers, and local waste processing may vary. The impact assessment methodology categories do not represent all possible environmental impact categories. Characterization factors used within the impact assessment methodology
- LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks. No "green power" is used in this declaration.

may contain varying levels of uncertainty.

- No renewable certificates or purchased CO₂ offsets are included. Flow diagram
 - Raw materials
- Steel coils Steel sheets Metal forming

Slit, punch, bend, press, brake

Metal brackets


Injection molding

Isolators

Slit coils

Upstream processing

Metal slitting

cidification	kg SO2 eq	8.89E-03	1.46E-03	4.23E-04	1.08E-02
utrophication	kg N eq	1.27E-03	9.26E-05	5.06E-05	1.42E-03
arcinogenics	CTUh	3.60E-08	6.69E-11	4.59E-10	3.65E-08
on carcinogenics	CTUh	2.05E-07	9.48E-09	1.38E-08	2.29E-0
espiratory effects	kg PM2.5 eq	1.82E-03	9.25E-05	6.18E-05	1.97E-03
dditional environmental information					
cotoxicity	CTUe	6.16E+00	1.80E-01	7.03E-02	6.41E+00
ossil fuel depletion	MJ surplus	2.23E+00	3.67E-01	8.42E-02	2.68E+00
esource use indicators					
enewable primary energy used as energy carrier (fuel)	MJ, LHV	1.83E+00	4.22E-03	2.07E+00	3.90E+0
enewable primary resources with energy content used as material	MJ, LHV	0	0	0	(
ital use of renewable primary resources with energy content	MJ, LHV	1.83E+00	4.22E-03	2.07E+00	3.90E+0
on-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	3.72E+01	2.58E+00	1.01E+00	4.08E+0
on-renewable primary resources with energy content used as material	MJ, LHV	0	0	0	
ital use of non-renewable primary resources with energy content	MJ, LHV	3.72E+01	2.58E+00	1.01E+00	4.08E+0
econdary materials	kg	0	0	0	
enewable secondary fuels	MJ, LHV	0	0	0	
on-renewable secondary fuels	MJ, LHV	0	0	0	
ecovered energy	MJ, LHV	0	0	0	
se of net fresh water resources	m3	7.74E+00	2.10E-02	1.67E+00	9.43E+0
piotic depletion potential for fossil resources	MJ, LHV	3.56E+01	2.57E+00	9.33E-01	3.91E+0
utput flows and waste category indicators	WIO, EI IV	J.JOL . 01	2.072.00	0.00L-01	5.5 IL
ezardous waste disposed	kg	0	0	0	
·		0	0	0	
on-hazardous waste disposed	kg				
gh-level radioactive waste, conditioned, to final repository	kg	6.62E-06	3.27E-08	3.10E-07	6.97E-0
termediate- and low-level radioactive waste, conditioned, to final reposito		1.43E-05	6.25E-08	6.72E-07	1.50E-0
omponents for re-use	kg	0	0	0	
aterials for recycling	kg	2.10E-02	0	4.41E-02	6.50E-0
aterials for energy recovery	kg	0	0	6.48E-03	6.48E-0
ported energy	MJ, LHV	0	0	0	
arbon emissions and removals					
ogenic Carbon Removal from Product	kg CO2	0	0	0	
ogenic Carbon Emission from Product	kg CO2	0	0	0	
ogenic Carbon Removal from Packaging	kg CO2	0	0	-1.13E-01	-1.13E-0
ogenic Carbon Emission from Packaging	kg CO2	0	0	0	
ogenic Carbon Emission from Combustion of Waste from Renewable ources Used in Production Processes	kg CO2	0	0	0	
alcination Carbon Emissions	kg CO2	0	0	0	
arbonation Carbon Removals	kg CO2	0	0	0	
arbon Emissions from Combustion of Waste from Non-Renewable Sources led in Production Processes	kg CO2	0	0	0	
system: LCIA scaling factors					
pact categories CI® (16ga	& 0.75" depth)	CI® (18ga & 1.5	0" depth)	CI® (16ga & 1.50	" depth)
zone depletion	1.20		1.07		1.2
obal warming	1.25		1.09		1.3
nog	1.25		1.09		1.4
cidification	1.25		1.09		1.4
utrophication	1.25		1.09		1.4
arcinogenics	1.25		1.09		1.4
-	1.25		1.09		1.3
on carcinogenics	0				
on carcinogenics espiratory effects	125		1.09		1 4
espiratory effects	1.25		1.09		1.4
	1.25 1.26		1.09		1.4

Extraction & upstream

processing

2.28E-08

4.56E+00

1.60E-01

1.20E-02

1.73E-03

4.87E-08

2.78E-07

2.46E-03

8.34E+00

3.02E+00

2.48E+00

5.03E+01

0

kg CFC-11 eq

kg CO2 eq

kg O3 eq

kg SO2 eq

kg N eq

CTUh

CTUh

CTUe

MJ surplus

MJ. LHV

MJ, LHV

MJ, LHV

kg

kg PM2.5 eq

[A2] Transport

3.83E-09

2.62E-01

6.37E-02

1.97E-03

1.25E-04

9.06E-11

1.28E-08

1.25E-04

2.44E-01

4.97E-01

5.71E-03

3.49E+00

0

0

0

0

0

0

[A3] Manufacturing

6.19E-09

9.13E-02

9.01E-03

5.05E-04

6.16E-05

5.54E-10

1.74E-08

7.78E-05

8.89E-02

100F-01

2.60E+00

2.60E+00

1.19E+00

0

0

Cradle-to-gate total

3.29E-08

4.92E+00

2.33E-01

1.45E-02

1.91E-03

4.94E-08

3.08F-07

2.66E-03

8.68E+00

3.61E+00

5.08E+00

5.08E+00

5.50E+01

5.50E+01

0

0

Total use of renewable primary resources with energy content MJ, LHV 2.48E+00 5.71E-03 MJ, LHV 1.19E+00 Non-renewable primary resources used as an energy carrier (fuel) 5.03E+01 3.49E+00 MJ, LHV Non-renewable primary resources with energy content used as material 0 0 0

MJ, LHV	0	0	0	0
		ů.	ŭ	U
MJ, LHV	0	0	0	0
MJ, LHV	0	0	0	0
m3	1.05E+01	2.85E-02	1.72E+00	1.22E+01
MJ, LHV	4.82E+01	3.48E+00	1.10E+00	5.28E+01
kg	0	0	0	0
kg	0	0	0	0
kg	8.97E-06	4.43E-08	3.59E-07	9.37E-06
ry kg	1.93E-05	8.47E-08	7.76E-07	2.02E-05
kg	0	0	0	0
kg	2.84E-02	0	1.62E-01	1.90E-01
kg	0	0	6.48E-03	6.48E-03
MJ, LHV	0	0	0	0
kg CO2	0	0	0	0
kg CO2	0	0	0	0
kg CO2	0	0	-1.46E-01	-1.46E-01
kg CO2	0	0	0	0
kg CO2	0	0	0	o
kg CO2	0	0	0	0
kg CO2	0	0	0	0
	MJ, LHV m3 MJ, LHV kg CO2 kg CO2 kg CO2 kg CO2 kg CO2 kg CO2	MJ, LHV 0 MJ, LHV 0 m3 1.05E+01 MJ, LHV 4.82E+01 kg 0 kg 0 kg 8.97E-06 ry kg 1.93E-05 kg 0 kg 2.84E-02 kg 0 MJ, LHV 0 kg CO2 0 kg CO2 0 kg CO2 0 kg CO2 0 kg CO2 0 kg CO2 0	MJ, LHV 0 0 0 MJ, LHV 0 0 0 m3 1.05E+01 2.85E-02 MJ, LHV 4.82E+01 3.48E+00 kg 0 0 0 kg 0 0 0 kg 8.97E-06 4.43E-08 ry kg 1.93E-05 8.47E-08 kg 0 0 0 kg 2.84E-02 0 kg 0 0 MJ, LHV 0 0 kg CO2 0 0 0 kg CO2 0 0 0 kg CO2 0 0 0 kg CO2 0 0 0 kg CO2 0 0 0 kg CO2 0 0 0	MJ, LHV 0 0 0 0 0 0 m3 1.05E+01 2.85E-02 1.72E+00 MJ, LHV 4.82E+01 3.48E+00 1.10E+00 MJ, LHV 4.82E+01 3.48E+00 1.10E+00 Mg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Life cycle impact assessment results

Additional environmental information

Renewable primary energy used as energy carrier (fuel)

Renewable primary resources with energy content used as material

Total use of non-renewable primary resources with energy content

Carbon Emissions from Combustion of Waste from Non-Renewable Sources

Ozone depletion

Global warming

Acidification

Eutrophication

Carcinogenics

Ecotoxicity

Non carcinogenics

Respiratory effects

Fossil fuel depletion

Secondary materials

Resource use indicators

Smog

Impact category	HCI (16ga & 0.75" depth)	HCI (18ga & 1.50" depth)	HCI (16ga & 1.50" depth)
Ozone depletion	1.22	1.32	1.57
Global warming	1.27	1.38	1.68
Smog	1.27	1.38	1.68
Acidification	1.26	1.38	1.68
Eutrophication	1.27	1.38	1.68
Carcinogenics	1.27	1.38	1.68
Non carcinogenics	1.27	1.38	1.69
Respiratory effects	1.27	1.38	1.68
Additional environmental information			
Ecotoxicity	1.27	1.38	1.69
Fossil fuel depletion	1.26	1.38	1.68
SM Transparency Report	(EPD)™ + Material Health Overview™		
EPD LCA	SUMMARY		

kg CO2

This environmental product declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 14044; ISO 21930:2017; SM Part A: LCA calculation rules and report requirements, 2023: SM Part B: Cladding Support Components and Systems; and ISO 14025:2006. Industrial Ecology Consultants 35 Bracebridge Rd Newton MA 02459 (617) 553-4929

Industrial Ecology Consultants

© 2025 | The SM Transparency Report [EPD][™] Program is operated by Sustainable Minds[®] (www.sustainableminds.com) | Priva

Regions; system boundaries North America; Cradle-to-gate

LCIA methodology; LCA software;

TRACI 2.1; SimaPro Developer 9.6; ecoinvent v3.10, Industry data 2.0,

LCA of KWS rainscreen cladding support systems

Reference PCR

is attached.

and US-EI 2.2 Public LCA

Declared unit depth sufficient to accommodate

101.6mm (4in) of insulation plus depth of support components outboard of insulation layer to which the cladding

2401 E 6th St

(855) 597-9255

Deer Park, WA, 99006

Contact us 0.6096m (24 linear in) of cladding support system: one single clip unit (if present) & metal rails with clip spaced at one per 24in, w/ exterior cavity

EKNIGHT

parency Catalog ► Knight Wall Systems ► Cl® and HCl Systems

& material health results & interpretation

Material health

tion programs

labels are issued to products disclosing ingredient inventory, , and end of life options. Declare labels are based on the turers Guide to Declare, administered by the International Living Future

works

ingredients are inventoried and screened against the Living Building e (LBC) Red List which represents the 'worst in class' materials, ls, and elements known to pose serious risks to human health and the ecosystem.

lare product database and label are used to select products that meet g Building Challenge's stringent materials requirements, streamlining rials specification and certification process.

ment scope and results

re™

tory threshold: 100 ppm

are level:

eclare product database and label ed to select products that meet the stringent materials requirements, lining the materials specification ertification process.

■ LBC Red List Free ② LBC Red List Approved 2 Declared 2

ne label to see the full declaration.

GIRT®/HCI GIRT®/PANELRAIL®

ght Wall Systems

Assembly: Deer Park, Washington, USA xpectancy: Life of Structure Year(s) f Life Options: Recyclable (100%)

dients: O Steel: Iron; Zinc: Zinc; Aluminum: Aluminum; esium: Magnesium

Building Challenge Criteria: Compli

ed List: Red List Free Red List Approved % Disclosed: 100% at 100ppm

VOC Content: Not Applica

nterior Performance: Not Applicable esponsible Sourcing: Not Applicable

0001 01 SEP 2025 nal Issue Date: 2024

NTERNATIONAL LIVING FUTURE INSTITUTE™ living-future.org/declare

What's in this product and why

Declare level

'Red List Free' is achieved when the product does not contain any ingredients listed on the Living Building Challenge Red List above the 100 ppm (0.01%) reporting threshold, demonstrating full compliance with material health requirements without the need for exceptions.

What's in the product and why

All components of the CI® and HCI systems are Red List Free. The Red List, developed by the International Living Future Institute, identifies chemicals and materials known to pose risks to human and environmental health. Eliminating these substances is a key design principle for Knight Wall Systems, and material selection for these systems was guided by that standard.

All metal components in the systems use steel coated with ZAM® (zincaluminum-magnesium), which is also Red List free. ZAM® offers excellent corrosion resistance, improving the overall longevity of the system. Steel's ability to be recycled indefinitely without degrading its properties also contributes to reducing environmental impact over the full life cycle of the

What's been done in the design and manufacture in consideration of the potential human health impacts in the use stage

CI® and HCI systems have been designed and manufactured with the intention of causing as little harm to human and environmental health as possible. By using recyclable steel and Red List free materials, the system ensures that end users do not need to be concerned about interacting with the product in either installation or long-term use.

Where it goes at the end of its life KWS encourages consumers to recycle used rainscreen cladding support

systems, which are 100% recyclable. For information on local recycling options, please contact your municipal waste management program.

How we're making it healthier

CI® and HCI systems is by focusing on responsible sourcing and material transparency. The steel used in the system is sourced from the USA, which helps reduce transportation-related emissions. Additionally, the steel contains at least 34.2% recycled content, meaning less new raw material is needed. This not only lowers the environmental impact of production but also promotes the use of recycled materials, making the system a more sustainable and healthier choice for both people and the planet.

One way we are reducing the environmental and health impacts of the

See how we make it greener

ences

Declare label for CI GIRT®/HCI GIRT®/PANELRAIL®

acturer's Guide to Declare

orehensive guide providing information about the program, the ment methodology, how to submit material data to obtain a Declare label w they are used to meet the Health & Happiness and Materials Petals of ing Building Challenge.

Rating systems

Credit value options

LEED BD+C: New Construction | v4 - LEED v4 Building product disclosure and optimization **Material Ingredients**

1. Reporting

2. Optimization 3. Supply Chain Optimization

LEED BD+C: New Construction | v4.1 - LEED v4.1 Materials and resources

Material Ingredients

Credit value options

2. Optimization 1. Reporting

Living Building Challenge Materials petals imperatives

♦ 10. Red List Free ○ 12. Responsible Industry ○ 13. Living Economy Sourcing

WELL Building Standard®

Air and Mind Features

X07 Materials Transparency X08 Materials Optimization

Collaborative for High Performance Schools National Criteria

EQ C7.1 Material Health Disclosures

Performance Approach

2 points

2 points

Prescriptive Approach

1 product each

1 product each

3. Supply Chain Optimization

SM Transparency Report (EPD)™ + Material Health Overview™

This environmental product

LCA y reviewed Transparency Report (EPD)

06/03/25 – 06/02/30 -20250603 - 001

y verified

lared

Material **AL HEALTH** evaluation

declaration (EPD) was externally verified by Industrial Ecology Consultants, according to ISO 14044; ISO 21930:2017; SM Part A: LCA calculation rules and report requirements, 2023; SM Part B: Cladding Support Components and Systems; and ISO 14025:2006. **Industrial Ecology Consultants**

The SM Transparency Report [EPD]™ Program is operated by Sustainable Minds® (www.sustainableminds.com) I Privacy policy

Industrial Ecology Consultants

35 Bracebridge Rd

Newton, MA 02459

(617) 553-4929

SUMMARY

Reference PCR

Regions; system boundaries

North America; Cradle-to-gate

Declared unit

0.6096m (24 linear in) of cladding support system: one single clip unit (if present) & metal rails with clip spaced at one per 24in, w/ exterior cavity depth sufficient to accommodate 101.6mm (4in) of insulation plus depth of support components outboard of insulation layer to which the cladding

is attached. LCIA methodology; LCA software;

TRACI 2.1; SimaPro Developer 9.6;

ecoinvent v3.10, Industry data 2.0, and US-EI 2.2

Public LCA


Contact us

Knight Wall Systems

Deer Park, WA, 99006

2401 E 6th St

(855) 597-9255

How we make it greener

Expand all

EXTRACTION AND UPSTREAM PROCESSING

SM Transparency Catalog ► Knight Wall Systems ► CI® and HCI Systems

Knight Wall Systems® sources steel produced in the United States using a Basic Oxygen Furnace, containing at least 34.2% recycled content. The steel is coated with a ZAM® coating, which is a Red List Free alloy that enhances corrosion resistance and extends the lifespan of our CI® and HCI systems beyond that of the building itself.

TRANSPORT TO FACTORY

Knight Wall Systems® prioritizes sustainability in the transportation practices by utilizing rail car transport for steel, minimizing carbon emissions. We optimize shipping efficiency by maximizing crate capacity and consolidating materials for multiple projects on each flatbed, reducing the number of shipments. Our CI® and HCI systems are packaged using only paper and scrap wood, eliminating single use plastic from our packaging process. To further reduce our environmental footprint, wood crates are locally sourced from Spokane, Washington, supporting regional supply chains and reducing transportation distances.

MANUFACTURING

The majority of Knight Wall Systems® material handling equipment used in our manufacturing processes is electric, helping to reduce emissions. Water-based lubricants are employed in our manufacturing equipment, minimizing the use of harmful chemicals. Additionally, our processes generate minimal waste, with the majority being steel that is then recycled.

ADDITIONAL ENVIRONMENTAL INFORMATION

Once installed, the CI® and HCI systems contribute to building sustainability by achieving up to 97% thermal performance efficiency, significantly reducing energy consumption. Made with ZAM®-coated steel, these systems are designed to outlast the expected lifetime of the building, ensuring long-term durability. Additionally, with only the fasteners penetrating the insulation, the CI® and HCI Systems are true, code compliant, continuous insulation systems that minimize thermal bridging, further enhancing the building's energy performance and supporting overall energy efficiency throughout its lifespan.

SM Transparency Report (EPD)™ + Material Health Overview™

This environmental product

verified by Industrial Ecology

Consultants, according to ISO

declaration (EPD) was externally

LCA Ø 3rd-party reviewed Transparency Report (EPD) 3rd-party verified Validity: 06/03/25 - 06/02/30 SM-KWS - 20250603 - 001

Material **MATERIAL HEALTH** evaluation

Self-declared Ø 14044; ISO 21930:2017; SM Part A: LCA calculation rules and report requirements, 2023; SM Part B: **Cladding Support Components and** Systems; and ISO 14025:2006. Industrial Ecology Consultants 35 Bracebridge Rd

Newton, MA 02459

(617) 553-4929

Industrial Ecology Consultants

SUMMARY

Reference PCR

SM Part B: Cladding Support Components and Systems, 2022

Regions; system boundaries North America; Cradle-to-gate

Declared unit

0.6096m (24 linear in) of cladding support system: one single clip unit (if present) & metal rails with clip spaced at one per 24in, w/ exterior cavity depth sufficient to accommodate 101.6mm (4in) of insulation plus depth of support components outboard of insulation layer to which the cladding is attached.

LCIA methodology; LCA software;

TRACI 2.1; SimaPro Developer 9.6; ecoinvent v3.10, Industry data 2.0, and US-EI 2.2

Public LCA

CA of KWS rainscreen cladding

Knight Wall Systems 2401 E 6th St Deer Park, WA, 99006

Contact us

(855) 597-9255